恒压供水变频器的使用方法及应用模式
恒压供水变频器的使用方法及应用模式通常在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量小时开一台或两台。在采用变频调速进行恒压供水时,就用两种方式,其一是所有水泵配用一台变频器;其二是每台水泵配用一台变频器。后种方法根据压力反馈信号,通过PID运算自动调整变频器输出频率,改变电动机转速,*终达到管网恒压的目的,就一个闭环回路,较简单,但成本高。前种方法成本低,性能不比后种差,但控制程序较复杂,是未来的发展方向。一般的供水系统,由于供水量及可靠性的要求,都采用多台泵并联运行的方式。这样也有利于当供水量在大范围内变化时,通过水泵的台数调节实现经济运行,但是仅用台数调节,不能保证恒压供水,且其运行效率也不高。水泵采用转速调节流量,运行的经济性*好。但对于容量较大的供水系统,若采用全容量转速调节,投资太大,也无必要。所以对于多台水泵的供水系统,用一台调速泵即可实现全容量范围的恒压供水,其它的泵只要定速运行。即用台数调节和转速调节共同保证供水量变化范围内的恒压供水。系统中的调速泵一般用变频器拖动。变频器除了通过调节水泵转速实现恒压供水外,也可通过切换控制用作其它泵的软起动设备。恒
高压变频器工作原理
高压变频器工作原理高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n=(1一s)60f/p=n。×(1一s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s一般情况下比较小(0-0.05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f,就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜中的控制单元通过光纤时对功率柜中的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。1移相式变压器移相变压器的副边绕组分为三
变频器调速原理及调速方法
变频器调速原理及调速方法变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。本方法适用于要求精度高、调速性能较好场合。变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
变频器控制柜的概况及作用
变频器控制柜、PT100传感器的概况及作用由于中央空调系统都是按*大负载并增加一定余量设计,而实际上在一年中,满负载下运行*多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。变频器控制柜概况变频器控制柜(变频器电气控制柜/电控柜/电控箱)采用西门子,ABB,施耐德,富士,三菱,松下,台达,士林,汇川等厂家的变频器而开发的电气控制柜,根据工况需要可在变频柜内安装交流输入电抗器,输出电抗器,直流电抗器及EMI滤波器,制动单元,制动电阻,接触器,中间继电器,热继电器,可编
变频器工作原理及应用
变频器工作原理及应用是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,
变频器控制电机转速的原理
变频器控制电机转速的原理变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。结论:改变频率和电压是**的电机控制方法如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,*高只能是等于电机的额定电压。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀工频电源:由电网提供的动力电源(商用电源)起动电流:当电机开始运转时,变频器的输出电流变频器驱动时的
变频器维修的基础知识
变频器维修的基础知识变频器维修的技术发展直流电动拖动和交流电动机拖动先后生于19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。由于当时的技术问题,在很长的一个时间内,需要进行调速控制的拖动系统中则基本上采用的是直流电动机。直流电动机存在以下缺点是由于结构上的原因:1、由于直流电动机存在换向火花,难以应用于存在易燃易爆气体的恶劣环境;2、需要定期更换电刷和换向器,维护保养困难,寿命较短;变频器维修的基础知识3、结构复杂,难以制造大容量、高转速和高电压的直流电动机。而与直流电动机相比,交流电动机则具有以下优点:1、不存在换向火花,可以应用于存在易燃易火暴气体的恶劣环境;2、容易制造出大容量、高转速和高电压的交流电动机;变频器维修的基础知识3、结构坚固,工作可靠,易于维护保养。变频器维修的基础知识就是因为这样,限制了交流高速系统的推广应用。经过20世纪70年代中期的**次石油危机之后和电子技术的发展,交流高速系统的变频器技术得到了高速的发展。变频器维修的开关电源开关电源电路提供变频器的整机控制用电,是变频器正常工作的先决条件。变频器应用的开关电源电路,为直一交一直型的逆变电
变频器维修的损坏原因
变频器维修的损坏原因变频器散热不好其实我们都知道,温度过高对任何设备都具有破坏作用,就像人的大脑那样,温度过高也会把脑子烧坏,其实变频器也一样的。温度升高时,由于半导体对温度的敏感性,逆变管的开通时间和关断时间,以及由延迟电路产生的等待时间,都将发生变化,并且具有比较准确的变化规律。当温度一旦超过某一限值时,将引起“等待时间”的不足,使逆变电路的输出波形出现“毛刺”,并*终导致逆变管因直通而损坏。但就多数设备而言,其破坏作用常常是比较缓慢的,受破坏时的温度通常是不很准确的,而唯独在变频器逆变电路中,温度一超过某一限值,会立即导致逆变管的损坏,并且该温度限值往往十分**。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀安装环境不准确变频器是一台全电力半导体设备,所以,它对周围环境的要求也和其他电力半导体设备相同。1、环境湿度:相对湿度不超过90%(无结露现象)2、其它条件:在变频器的安装位置应无直射阳光、无腐蚀性气体及易燃气体、尘埃少、海拔低于1000m等。3、环境温度:现般要求为-10至40度。如散热条件好(
变频器维修的故障案例分析
(1)AEGMultiverter122/150-400变频器在启动时直流回路过压跳闸这台变频器并非每次启动都会过压跳闸。检查时发现变频器在上电但没有合闸信号时,直流回路电压即达360V,该型变频器直流回路的正极串接1台接触器,在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路IGBT性能**,断开预充电回路IGBT,情况依旧。用万用表检查变频器输出端时其对地阻值很小,查至现场发现电机接线盒被水淋湿,干燥处理后,变频器工作正常。由于电机接线盒被水淋湿,直流回路负极的对地漏电流经接线盒及变频器逆变器中的续流二极管给直流回路的电容充电,这种情况合闸通常理解应该为过流跳闸而实际为过压跳闸。本人认为,启动时变频器输出电压和频率是逐渐上升的,电机被水淋湿后,会造成输出电流的变化率很高,从而引起直流回路过压。(2)控制辊道电机的AEGMaxiverter-170/380变频器出现速度反馈值大于速度设定值经观察发现:a)在轧钢过程中不存在这种情况,当钢离开辊道后,才出现这种情况;b)当速度反馈值大于速度设定值时,直流回路电压为额定电压的125%,超过115%的极限设定值;c)变频器的进线电压已超过
台达变频器的常见种类
台达变频器的常见种类台达变频器在中国生产的常用型号有如下几种:VFD-M系列:低噪音迷你系列VFD-S系列:多功能简易型VFD-A系列:低噪音范用型VFD-B系列:无感测向量控制型VFD-F系列:风机水泵专用型VFD-E系列:内置小型PLC,高功能/弹性扩展型VFD-EL系列:迷你型,无内置刹车电阻湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀VFD-C2000:磁场导向矢量控制,内置PLCVFD-VJ系列:油电伺服驱动器VFD-VL系列:电梯专用变频器VFD-VE系列:高性能磁束向量变频器VFD-B-P系列:高性能平板型,穿墙封闭安装,适合高粉尘环境
台达变频器的参数设置
台达变频器的参数设置变频器的运行和相关参数的设置:变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。*低运行频率:即电机运行的*小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀*高运行频率:一般的变频器*大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。电机参数:变频器在参数中设定电机的功率、电流、电压、转速、*大频率,这些参数可以从电机铭牌中直接得到。跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,
西门子变频器的控制参数
西门子变频器的控制参数变频器日常使用中出现的一些问题,很多情况下都是因为变频器参数设置不当引起的。西门子变频器可设置的参数有几千个,只有系统地、合适地、准确地设置参数才能充分利用变频器性能。西门子变频器的控制参数变频器控制方式的选择由负荷的力矩特性所决定,电动机的机械负载转矩特性根据下列关系式决定:p=tn/9550式中:p——电动机功率(kw)t——转矩(n.m)n——转速(r/min)转矩t与转速n的关系根据负载种类大体可分为3种。(1)即使速度变化转矩也不大变化的恒转矩负载,此类负载如传送带、起重机、挤压机、压缩机等。(2)随着转速的降低,转矩按转速的平方减小的负载。此类负载如风机、各种液体泵等。(3)转速越高,转矩越小的恒功率负载。此类负载如轧机、机床主轴、卷取机等。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀变频器提供的控制方式有v/f控制、矢量控制、力矩控制。v/f控制中有线性v/f控制、抛物线特性v/f控制。将变频器参数p1300设为0,变频器工作于线性西门子变频器的
西门子变频器的常见型号
西门子变频器的常见型号MicroMaster440西门子变频器MicroMaster440是全新一代可以广泛应用的多功能标准变频器。它采用高性能的矢量控制技术,提供低速高转矩输出和良好的动态特性,同时具备超强的过载能力,以满足广泛的应用场合。**的BiCo(内部功能互联)功能有无可比拟的灵活性。主要特征:200V-240V±10%,单相/三相,交流,0.12kW-45kW;380V-480V±10%,三相,交流,0.37kW-250kW;矢量控制方式,可构成闭环矢量控制,闭环转矩控制;高过载能力,内置制动单元;三组参数切换功能。控制功能:线性v/f控制,平方v/f控制,可编程多点设定v/f控制,磁通电流控制免测速矢量控制,闭环矢量控制,闭环转矩控制,节能控制模式;标准参数结构,标准调试软件;数字量输入6个,模拟量输入2个,模拟量输出2个,继电器输出3个;独立I/O端子板,方便维护;采用BiCo技术,实现I/O端口自由连接;内置PID控制器,参数自整定;湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀集成RS485通讯接口,可选P
台达变频器的故障
不锈钢电热管分析台达变频器的故障台达变频器过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。台达变频器过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀台达变频器欠压:说明变频器电源输入部分有问题,需检查后才可以运行。台达变频器输出端打火:拆开检查后发现IGBT逆变模块击穿,驱动电路印刷电路板严重损坏,正确的解决办法是先将损坏IGBT逆变模块拆下,拆的时候主要应尽量保护好印刷电路板不受人为二次损坏,将驱动电路上损坏的电
台达变频器的控制方式
台达变频器的控制方式台达变频器的控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。1U/f=C的正弦脉宽调制(SPWM)控制方式:其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出*大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。电压空间矢量(SVPWM)控制方式:它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,