航空器知识大全

分享到:
点击量: 205415

航空器概述

  航空器(aircraft)是指在大气层中飞行的飞行器。包括飞机、飞艇、气球及其他任何藉空气之反作用力,得以飞航于大气中之器物。由动力装置产生前进推力,由固定机翼产生升力,在大气层中飞行的重于空气的航空器。无动力装置的滑翔机﹑以旋翼作为主要升力面的直升机以及在大气层外飞行的航天飞机都不属飞机的范围。但在日常生活中,有人习惯地将气球﹑飞艇以外的航空器泛称飞机。飞行效率在所有航空器中,飞机具有速度快﹑载重大和飞行效率高的优点。在燃料﹑发动机和推进装置一定的条件下﹐运载工具的效率可用载重量和飞行距离来衡量。

  

航空器分类

  根据产生升力的基本原理不同,航空器分为轻于(或等于)同体积空气的航空器和重于同体积空气的航空器两大类.

  

航空器的平衡

  航空器的平衡指的是一架航空器的重心位置,它对航空器的稳定性、可控性以及飞行**是极其重要的。

  航空器的平衡直接受到各部分作用力的影响,如空气对航空器的作用力、航空器上装载的业载重量对航空器的作用力等。作用于航空器各部位的力,如果不是通过航空器的重心,就要对航空器的重心构成力矩,促使航空器发生转动。引起航空器上仰或下俯的力矩称为俯仰力矩;引起航空器向左侧或向右侧倾斜的力矩称为滚转力矩;引起航空器向左方或向右方转向的力矩称为偏转力矩。由于力矩有三种,因此航空器的平衡也有三种,即俯仰平衡、横侧平衡和方向平衡。

  1. 俯仰平衡。是指作用于航空器上的上仰力矩和下俯力矩彼此相等,使航空器既不上仰,也不下俯。

  影响航空器的俯仰平衡的因素主要有旅客的座位安排方式和货物的装载位置及滚动情况、机上人员的走动、燃料的消耗、不稳定气流、起落架或副翼的伸展和收缩等。因此配载人员在安排旅客的座位时,除去按照舱位等级与旅客所持客票的票价等级一致来安排之外,在对重心影响较小的舱位尽量多安排旅客,并且在航空器起降时请旅客不要在客舱内走动,以免影响航空器的俯仰平衡和旅客的**;在安排货物时,对重心影响程度小的货舱尽量多装货物,并且对于散装货物来说,要固定牢靠,防止货物在货舱内滚动,影响俯仰平衡及造成货物损坏。

  当航空器由于外界干扰而失去俯仰平衡时,可以靠航空器自身的安定性能自动恢复平衡,也可以通过操纵驾驶杆改变升降舵角度而使航空器恢复俯仰平衡。

  2. 横侧平衡。是指作用于航空器机身两侧的滚动力矩彼此相等,使航空器既不向左滚转,也不向右滚转。

  影响航空器的横侧平衡的因素主要有燃油的加装和利用方式、货物装载情况和滚动情况、空气流的作用等。因此加油和耗油时都要保持左右机翼等量。尤其对于宽体航空器,装载货物时要保证机身两侧的载量相差不大,同时固定稳固,避免货物在航空器失去横侧平衡时向一侧滚动而加重不平衡的程度。

  当由于某种原因使航空器失去横侧平衡时,可以通过改变某侧机翼的副翼角度而使航空器恢复横侧平衡。例如当航空器向左侧滚转时,则增大左侧副翼放下角度使左侧升力增大,就使向右滚转的力矩增大,使航空器重新回到横侧平衡状态。

  3. 方向平衡。是指作用于航空器机身两侧的力形成的使航空器向左和向右偏转的力矩彼此相等,使航空器既不向左偏转,也不向右偏转。

  影响航空器的方向平衡的因素主要有发动机推力的突然改变和横向风。例如航空器在飞行时一台发动机熄火,则航空器必然向该发动机所在一侧偏向。又如航空器在飞行时,遇到一股横向风,则航空器出现偏向。

  当由于某种情况使航空器失去方向平衡时,可以通过改变方向舵角度,使航空器向相反方向偏转,即可使航空器恢复方向平衡。例如航空器向右侧偏向时,则使方向舵向左偏一定角度,产生向左偏转的力矩,使航空器回到原方向来。

  由于航空器有俯仰平衡、横侧平衡和方向平衡,因此当航空器同时处于这三种平衡状态时,才说明航空器处于平衡状态。

  

航空器的重心

  飞机的各个部位都具有重力,所有重力的合力为整个飞机的重力,飞机重力的着力点为飞机的重心。飞机的重心是一个假设的点,假定飞机的全部重量都集中在这个点上并支撑起飞机,飞机就可以保持平衡。飞机作任何转动都是围绕飞机的重心进行的。飞机的重心位置取决于载量在飞机上的分布,除了在重心位置以外,飞机上任何部位的载重量发生变化,都会使飞机的重心位置发生移动,并且重心总是向载重量增大的方向移动。

  1. 限制飞机重心位置的原因

  (1) 从飞机性能方面分析

  限制飞机重心主要是考虑飞机的安定性和操纵性。安定性是指飞机由于外界干扰而失去俯仰平衡时,不需要飞行员干预,完全靠飞机自身自动恢复俯仰平衡的性能。飞机具备好的安定性,就可以很大程度上减轻飞行员的工作量,避免飞行员过于疲劳而影响飞行**。操纵性则是通过飞行员的操纵,使飞机达到要求的姿态的性能。飞机具备好的操纵性显然也是十分重要的。从作用原理可知,飞机的重心越靠前,安定性越好;飞机的重心越靠后,则操纵性越好。由于安定性和操纵性都是飞机十分重要的性能,因此都要达到较好的程度,因此要限定飞机的重心的前后位置。

  (2) 从经济性方面分析

  当飞机的重心过于靠前(或靠后)时,如果飞行员不干预的话,飞机在巡航飞行时必然处于低头(或抬头)的姿态,使飞机遇到的空气阻力很大,进而增大飞行成本。因此要限定飞机重心的前后位置。

  (3) 从**方面分析

  当飞机的重心过于靠前(或靠后)时,飞机在巡航飞行时必然处于低头(或抬头)的姿态,如果飞行员不干预的话,必然使飞机不断改变飞行高度;如果飞行员始终干预的话,又过于疲劳,两种情况都容易出现事故。另外飞机在停机坪时,如果飞机的重心过于靠前(或靠后),必然使飞机的前起落架(或主起落架)承受载荷过大,一旦超过其能够承受的载荷限额时,将使起落架损坏。因此要限定飞机重心的前后位置。

  2. 重心位置的表示方法

  (1) 翼弦

  在飞机机翼上任何部位的横截面中,机翼前部称为机翼前缘,机翼后部称为机翼后缘。前后缘之间的直线段称为机翼的翼弦。由于现代飞机机翼的几何形状不是简单的矩形而常为锥形后掠状,因此飞机机翼上从翼根至翼尖之间每一处的翼弦的长度一般是不相同的。

  (2) 平均空气动力弦(MAC)

  假想一个矩形机翼,其面积、空气动力特性和俯仰力矩等都与原机翼相同。该矩形机翼的翼弦与原机翼某处的翼弦长度相等,则原机翼的这条翼弦即为平均空气动力弦,用MAC表示。

  (3) 重心位置的表示方法

  每种机型的平均空气动力弦的长度和所在位置都是固定的,都已经在飞机的技术说明书中写明。因此就可以把飞机的重心投影到平均空气动力弦上,然后以重心投影点与平均空气动力弦的前缘之间的距离占平均空气动力弦长度的百分之几表示重心的位置。

  

航空器和飞机的区别

  航空器和飞机有什么区别?航空器是指人造的各种能在空气中飞翔的飞行物体;飞机仅仅是航空器中的一种。目前我们能见到的航空器除了飞机之外还有气球、飞艇、直升机、滑翔机等。其实我们放的风筝、儿童玩的竹蜻蜓都是航空器。

  为什么许多人认为航空器就是飞机呢?这是由历史原因造成的。*早实现人类升空梦想的物体是气球。气球是在气囊中装入比空气轻的氢气或热空气利用浮力升空的。它在空气中飘浮如同船在水上飘浮一样,但气球不能控制自己的运动方向,因此无法做为运输工具。随后人们在气球上加装了动力、螺旋桨和方向舵,气球的飞行方向就可以被控制了,这就发展为飞艇。从20世纪初直至20世纪30年代,飞艇曾经是航空运输的主力。同一时期,飞机的性能迅速提高,于是飞艇就被淘汰出航空运输领域。现在的飞艇只限于在空中巡逻、摄影或广告中使用。

  从以上几种航空器的比较看来,它们在实际使用中都不尽如人意。后来居上的飞机在各种性能方面远远超过前者,从而获得突飞猛进的发展,到了20世纪40年代以后,飞机就理所当然地成了航空器中的主角。飞机的使用数量占各类航空器总数的97%以上。这个比例仍在不断增高,这可能就是许多人把航空器等同于飞机的一个原因吧。