微机电系统知识大全

分享到:
点击量: 201707

微机电系统概述

  微机电系统(Micro Electro-Me-chanical Systems,MEMS)。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。

  微机电系统将微电子技术与机械工程融合到一起的一种工业技术,它的操作范围在微米范围内。比它更小的,在纳米范围的类似的技术被称为纳机电系统。

  微机电系统是微米大小的机械系统,其中也包括不同形状的三维平板印刷产生的系统。这些系统的大小一般在微米到毫米之间。在这个大小范围中日常的物理经验往往不适用。比如由于微机电系统的面积对体积比比一般日常生活中的机械系统要大得多,其表面现象如静电、润湿等比体积现象如惯性或热容量等要重要。它们一般是由类似于生产半导体的技术如表面微加工、体型微加工等技术制造的。其中包括更改的硅加工方法如压延、电镀、湿蚀刻、干蚀刻、电火花加工等等。

  微机电系统主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,目前微机电系统加工技术又被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。

  

微机电系统的特点

  1)微型化:微机电系统器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。

  2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。

  3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的微机电系统。批量生产可大大降低生产成本。

  4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的微机电系统。

  5)多学科交叉:微机电系统涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多**成果。 微机电系统发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。微机电系统可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。二十一世纪微机电系统将逐步从实验室走向实用化,对工农业、信息、环境、生物工程、医疗、空间技术、国防和科学发展产生重大影响。

  

微机电系统器件的主要种类

  目前,微机电系统技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往便会产生一种新型的微机电系统器件。正因为如此,微机电系统器件的种类极为繁杂。根据目前的研究情况,除了进行信号处理的集成电路部件以外,微机电系统内部包含的单元主要有以下几大类:

  (1)微传感器。微传感器种类很多,主要包括机械类、磁学类、热学类、化学类、生物学类等等,每一类中又包含有很多种。例如机械类中又包括力学、力矩、加速度、速度、角速度(陀螺)、位置、流量传感器等,化学类中又包括气体成分、湿度、PH值和离子浓度传感器等。

  (2)微执行器。微执行器主要包括微马达、微齿轮、微泵、微阀门、微机械开关、微喷射器、微扬声器、微可动平台等。

  (3)微型构件。三维微型构件主要包括微膜、微梁、微探针、微齿轮、微弹簧、微腔、微沟道、微锥体、微轴、微连杆等。

  (4)微机械光学器件。这是一种利用微机电系统技术制作的光学元件及器件。目前制备出的微光学器件主要有微镜阵列、微光扫描器、微光阀、微斩光器、微干涉仪、微光开关、微变焦透镜、微外腔激光器、光编码器等。

  (5)真空微电子器件。它是微电子技术、微机电系统技术和真空电子学发展的产物,是一种采用已有的微细加工工艺在芯片上制造的集成化微型真空电子管或真空集成电路。它主要由场致发射阵列阴极、阳极、两电极之间的绝缘层和真空微腔组成。由于电子输运是在真空中进行的,因此真空微电子器件具有极快的开关速度、非常好的抗辐照能力和**的温度特性。目前研究较多的真空微电子器件主要包括场发射显示器、场发射照明器件、真空微电子毫米波器件、真空微电子传感器等。

  (6)电力电子器件。它主要包括利用微机电系统技术制作的垂直导电型MOS(VMOS)器件、V型槽垂直导电型MOS(VVMOS)器件等各类高压大电流器件。

  现在,已经有很多很多种用途各异的微机电系统器件相继问世。目前,微型马达的实例较多,其中德国采用LIGA技术制备的微型马达比较成功,已用于微型直升机样品。

  

微机电系统的主要加工工艺

  目前,常用的制作微机电系统器件的技术主要有三种。

  **种是以日本为代表的利用传统机械加工手段,即利用大机器制造小机器,再利用小机器制造微机器的方法。

  **种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基微机电系统器件。

  第三种是以德国为代表的LIGA(即光刻、电铸和塑铸)技术,它是利用X射线光刻技术,通过电铸成型和塑铸形成深层微结构的方法。

  上述**种方法与传统IC工艺兼容,可以实现微机械和微电子的系统集成,而且适合于批量生产,已经成为目前微机电系统的主流技术。LIGA技术可用来加工各种金属、塑料和陶瓷等材料,并可用来制做深宽比大的精细结构(加工深度可以达到几百微米),因此也是一种比较重要的微机电系统加工技术。LIGA技术自八十年代中期由德国开发出来以后得到了迅速发展,人们已利用该技术开发和制造出了微齿轮、微马达、微加速度计、微射流计等。**种加工方法可以用于加工一些在特殊场合应用的微机械装置,如微型机器人、微型手术台等。

  

微机电系统的应用

  1. 在喷墨打印机里作为压电元件

  2. 在汽车里作为加速规来控制碰撞时**气囊防护系统的施用

  3. 在汽车里作为陀螺来测定汽车倾斜,控制动态稳定控制系统

  4. 在轮胎里作为压力传感器,在医学上测量血压

  5. 数字微镜芯片

  6. 在计算机网络中充当光交换系统,这是一个与智能灰尘技术的融合

  7. 设计微机电系统*重要的工具是有限元分析。

  微机电系统在工业、信息和通信、国防、航空航天、航海、医疗和物生工程、农业、环境和家庭服务等领域有着潜在的巨大应用前景。目前,微机电系统的应用领域中**的有:汽车、医疗和环境;正在增长的有:通信、机构工程和过程自动化;还在萌芽的有:家用/**、化学/配药和食品加工。

  微机电系统作为一个新兴的技术领域,有可能象当年的微电子技术一样,成为一门重大的产业。但瑞在它还处在初级阶段,因而我国在这一领域,机遇和挑战并存。从研究开发的情况来看,我国在该领域的技术水平与世界先进水平的差距并不太大,某些方面甚至已达到先进水平。但是,我国在微机电系统技术的产业化方面,却远远落后于世界先进水平。 微机电系统在二十一世纪将会有更大的发展。我们应该正视下一世纪在高技术领域中的激烈竞争,争取在不远的将来在国际上占有一席之地,迎接二十一世纪技术与产业**的挑战。

  

微机电系统技术的发展历史

  微机电系统**轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。由于薄硅片振动膜在压力下变形,会影响其表面的压敏电阻走线,这种变化可以把压力转换成电信号。后来的电路则包括电容感应移动质量加速计,用于触发汽车**气囊和定位陀螺仪。

  **轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。TI公司根据静电驱动斜微镜阵列推出了投影仪,而热式喷墨打印头现在仍然大行其道。

  第三轮商业化可以说出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。尽管该市场现在萧条,但微光学器件从长期看来将是微机电系统一个增长强劲的领域。

  目前微机电系统产业呈现的新趋势是产品应用的扩展,其开始向工业、医疗、测试仪器等新领域扩张。推动第四轮商业化的其它应用包括一些面向射频无源元件、在硅片上制作的音频、生物和神经元探针,以及所谓的'片上实验室'生化药品开发系统和微型药品输送系统的静态和移动器件。

  

微机电系统技术的发展趋势

  根据微机电系统发展的现状,人们对今后微机电系统技术的发展进行了大量的预测,作为本文的小结,将大多数专家认为的微机电系统技术在今后的主要发展趋势综合如下:

  (1)研究方向多样化。从历次大型微机电系统国际会议的论文来看,微机电系统技术的研究日益多样化。微机电系统技术涉及的领域主要包括惯性器件(如加速度计与陀螺)、原子力显微镜、数据存储、三维微型结构的制作、微型阀门、泵和微型喷口、流量器件、微型光学器件、各种执行器、微型机电器件性能模拟、各种制造工艺、封装键合、医用器件、实验表征器件、压力传感器、麦克风以及声学器件等。内容涉及**、民用等各个应用领域。

  (2)加工工艺多样化。正在使用和研究的加工工艺有传统的体硅加工工艺、表面牺牲层工艺、溶硅工艺、深槽刻蚀与键合相结合的加工工艺、SCREAM工艺、LIGA加工工艺、厚胶与电镀相结合的金属牺牲层工艺、MAMOS工艺、体硅工艺与表面牺牲层工艺相结合等,而具体的加工手段更是多种多样。

  (3)系统单片集成化。一般传感器的输出信号(电流或电压)很弱,若将它连接到外部电路,则寄生电容、电阻等的影响会彻底掩盖有用的信号,因此采用灵敏元件外接处理电路的方法已不可能得到质量很高的传感器,只有把两者集成在一个芯片上,才能具有*好的性能。

  (4)微机电系统器件芯片制造与封装统一考虑。微机电系统器件与集成电路芯片的主要不同在于:微机电系统器件芯片一般都有活动部件,比较脆弱,在封装前不利于运输。所以,微机电系统器件芯片制造与封装应统一考虑。封装技术是微机电系统的一个重要研究领域,几乎每次微机电系统国际会议都对封装技术进行专题讨论。

  (5)普通商用低性能微机电系统器件与高性能特殊用途(如航空、航天、**用)微机电系统器件并存。例如加速度计,既有大量的只要求精度为0.5g以上、可广泛应用于汽车**气囊等的具有很高经济价值的加速度计,也有要求精度为10-8g的、可应用于航空航天等高科技领域的加速度计。对于陀螺,也是有些情况要求其精度为0.1°/小时,有的则只要求10000°/小时。